15 research outputs found

    Towards ‘Metaheuristics in the Large’

    Get PDF
    There is a pressing need for a higher-level architectural per- spective in metaheuristics research. This article proposes a purely functional collection of component signatures as a basis for the scalable and automatic construction of meta- heuristics. We claim that this is an important step for sci- entific progress because: i). It is increasingly accepted that newly-proposed meta- heuristics should be grounded in terms of well-defined frameworks and components. Standardized descrip- tions help to distinguish novelty from minor variation. ii). Greater reproducibility is needed, particularly to facil- itate comparison with the state-of-the-art. iii). Interoperable descriptions are a pre-requisite for a data model supporting large-scale knowledge discovery across frameworks and problems. A key obstacle is that metaheuristic components suffer from an intrinsic lack of modularity, so we present some design op- tions for dealing with this and use this to provide a roadmap for addressing the above issues.PreprintPeer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore